Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Les sujets
Type de document
Gamme d'année
1.
Free Radical Biology and Medicine ; 201(Supplement 1):43, 2023.
Article Dans Anglais | EMBASE | ID: covidwho-2324269

Résumé

Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM particularly affects the lungs. Noise also increased levels of circulating stress hormones adrenaline and noradrenaline, while PM increased levels of circulating cytokines CD68 and MCP-1. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure.Copyright © 2023

2.
Bulletin of the American Meteorological Society ; 103(8):E1796-E1827, 2022.
Article Dans Anglais | Web of Science | ID: covidwho-2123275

Résumé

During spring 2020, the COVID-19 pandemic caused massive reductions in emissions from industry and ground and airborne transportation. To explore the resulting atmospheric composition changes, we conducted the BLUESKY campaign with two research aircraft and measured trace gases, aerosols, and cloud properties from the boundary layer to the lower stratosphere. From 16 May to 9 June 2020, we performed 20 flights in the early COVID-19 lockdown phase over Europe and the Atlantic Ocean. We found up to 50% reductions in boundary layer nitrogen dioxide concentrations in urban areas from GOME-2B satellite data, along with carbon monoxide reductions in the pollution hot spots. We measured 20%-70% reductions in total reactive nitrogen, carbon monoxide, and fine mode aerosol concentration in profiles over German cities compared to a 10-yr dataset from passenger aircraft. The total aerosol mass was significantly reduced below 5 km altitude, and the organic aerosol fraction also aloft, indicative of decreased organic precursor gas emissions. The reduced aerosol optical thickness caused a perceptible shift in sky color toward the blue part of the spectrum (hence BLUESKY) and increased shortwave radiation at the surface. We find that the 80% decline in air traffic led to substantial reductions in nitrogen oxides at cruise altitudes, in contrail cover, and in resulting radiative forcing. The light extinction and depolarization by cirrus were also reduced in regions with substantially decreased air traffic. General circulation-chemistry model simulations indicate good agreement with the measurements when applying a reduced emission scenario. The comprehensive BLUESKY dataset documents the major impact of anthropogenic emissions on the atmospheric composition.

3.
Atmospheric Chemistry and Physics ; 22(16):10901-10917, 2022.
Article Dans Anglais | Web of Science | ID: covidwho-2025097

Résumé

Aerosols influence the Earth's energy balance directly by modifying the radiation transfer and indirectly by altering the cloud microphysics. Anthropogenic aerosol emissions dropped considerably when the global COVID-19 pandemic resulted in severe restraints on mobility, production, and public life in spring 2020. We assess the effects of these reduced emissions on direct and indirect aerosol radiative forcing over Europe, excluding contributions from contrails. We simulate the atmospheric composition with the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model in a baseline (business-as-usual) and a reduced emission scenario. The model results are compared to aircraft observations from the BLUESKY aircraft campaign performed in May-June 2020 over Europe. The model agrees well with most of the observations, except for sulfur dioxide, particulate sulfate, and nitrate in the upper troposphere, likely due to a biased representation of stratospheric aerosol chemistry and missing information about volcanic eruptions. The comparison with a baseline scenario shows that the largest relative differences for tracers and aerosols are found in the upper troposphere, around the aircraft cruise altitude, due to the reduced aircraft emissions, while the largest absolute changes are present at the surface. We also find an increase in all-sky shortwave radiation of 0.21 +/- 0.05 Wm(-2) at the surface in Europe for May 2020, solely attributable to the direct aerosol effect, which is dominated by decreased aerosol scattering of sunlight, followed by reduced aerosol absorption caused by lower concentrations of inorganic and black carbon aerosols in the troposphere. A further increase in shortwave radiation from aerosol indirect effects was found to be much smaller than its variability. Impacts on ice crystal concentrations, cloud droplet number concentrations, and effective crystal radii are found to be negligible.

4.
Kardiologe ; 2021.
Article Dans Allemand | EMBASE | ID: covidwho-1432630

Résumé

Background: The mortality from COVID-19 is increased in the presence of cardiopulmonary comorbidities. Air pollution is also associated with increased mortality, primarily mediated by cardiopulmonary diseases. Observations at the beginning of the COVID-19 pandemic showed that mortality from COVID-19 was increased, especially in regions with higher levels of air pollution. The influence of air pollution on the course of the disease in COVID-19 is unclear. Method: A selective literature search of studies up to the beginning of April 2021 was carried out in PubMed on the association between air pollution and COVID-19 mortality using the search terms “air pollution AND/OR COVID-19/coronavirus/SARS-CoV‑2 AND/OR mortality”. Results: Current research shows that around 15% of global COVID-19 deaths are due to air pollution. The proportion of COVID-19 deaths from air pollution is 19% in Europe, 17% in North America and 27% in East Asia. This role of air pollution in COVID-19 deaths has now been confirmed by various studies from the USA, Italy and England. Air pollution and COVID-19 result in similar damage to the cardiopulmonary system, which may explain the link between air pollution and increased COVID-19 mortality. Conclusion: The environmental aspect of the COVID-19 pandemic shown here calls for greater efforts to be made towards effective measures to reduce anthropogenic emissions, which cause both air pollution and climate change.

SÉLECTION CITATIONS
Détails de la recherche